• Custom integration development
• Framework-specific optimization
• Enterprise deployment support
• Team training and workshops
Official and community-supported integrations for popular agentic AI frameworks. Generate verified metadata automatically for your agents with minimal code changes.
Maintained by the AgentFacts team and framework authors. Production-ready with full support and documentation.
Generate AgentFacts metadata automatically for LangChain agents. Supports ReAct, conversational, and custom agent patterns.
from langchain.agents import create_react_agent
from agentfacts_langchain import AgentFactsGenerator
# Create your agent as usual
agent = create_react_agent(llm, tools)
# Generate AgentFacts metadata
agentfacts = AgentFactsGenerator.from_agent(
agent=agent,
agent_name="Research Assistant",
compliance={"eu_ai_act": "low_risk"}
)
# Export or register
agentfacts.export("agentfacts.json")
agentfacts.register_blockchain(chain="hedera")
Multi-agent crew verification. Generate AgentFacts for individual agents or entire crews with automatic role-based metadata.
from crewai import Crew, Agent
from agentfacts_crewai import CrewFactsGenerator
# Define your crew
crew = Crew(
agents=[researcher, writer, reviewer],
tasks=[research_task, writing_task, review_task]
)
# Generate AgentFacts for entire crew
crew_facts = CrewFactsGenerator.from_crew(
crew=crew,
crew_name="Content Production Crew"
)
# Or generate for individual agents
agent_facts = CrewFactsGenerator.from_agent(researcher)
Microsoft AutoGen integration with support for conversable agents and group chats. Community-maintained with active development.
from autogen import AssistantAgent
from agentfacts_autogen import AutoGenFactsGenerator
# Create your AutoGen agent
assistant = AssistantAgent(
name="research_assistant",
llm_config={"model": "gpt-4"}
)
# Generate AgentFacts
agentfacts = AutoGenFactsGenerator.from_agent(
agent=assistant,
compliance={"nist_ai_rmf": True}
)
agentfacts.export("agentfacts.json")
Microsoft Semantic Kernel integration supporting C# and Python. Generate metadata for skills, planners, and complete kernel configurations.
using Microsoft.SemanticKernel;
using AgentFacts.SemanticKernel;
// Create kernel
var kernel = Kernel.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", apiKey)
.Build();
// Generate AgentFacts
var agentFacts = AgentFactsGenerator.FromKernel(
kernel,
agentName: "SK Assistant",
compliance: new { EuAiAct = "low_risk" }
);
await agentFacts.ExportAsync("agentfacts.json");
RAG-focused integration for LlamaIndex agents. Will support query engines, chat engines, and ReAct agents with automatic data source tracking.
Early Access: Join our waitlist to get notified when LlamaIndex integration launches. We're working with the LlamaIndex team to ensure first-class support.
Community-maintained integrations for emerging frameworks. Want to add yours? Submit a PR →
Built an AgentFacts integration for your framework? We'd love to feature it here. Submit a pull request with your integration details.
Contribution Guide →Creating an AgentFacts integration for a new framework is straightforward. Follow this guide to add AgentFacts support to any agent framework.
Introspect your framework's agent objects to extract relevant information: model, capabilities, configurations, etc.
def extract_metadata(agent):
return {
"model": agent.llm.model_name,
"tools": [tool.name for tool in agent.tools],
"memory": agent.memory.type if agent.memory else None
}
Transform extracted metadata into the AgentFacts 10-category structure. Use the JSON schema for validation.
from agentfacts import AgentFactsSchema
def to_agentfacts(metadata, agent_name):
return AgentFactsSchema(
core_identity={
"agent_id": f"did:agentfacts:{agent_name}",
"name": agent_name,
"version": "1.0.0"
},
baseline_model={
"foundation_model": metadata["model"]
},
capabilities={
"tool_calling": True,
"domain_expertise": metadata["tools"]
}
)
Provide convenient methods to export AgentFacts metadata as JSON, register on blockchain, or integrate with governance systems.
class AgentFactsGenerator:
@staticmethod
def from_agent(agent, **kwargs):
metadata = extract_metadata(agent)
return to_agentfacts(metadata, **kwargs)
def export(self, filepath):
with open(filepath, 'w') as f:
json.dump(self.to_dict(), f, indent=2)
def register_blockchain(self, chain="hedera"):
# Blockchain registration logic
pass
Study the LangChain integration as a complete reference implementation with tests and documentation.
View Reference Code →Use our cookiecutter template to bootstrap a new framework integration with boilerplate code.
Get Template →Extract as much metadata as possible automatically from the agent object. Minimize required user input.
When possible, pre-populate compliance fields based on model characteristics (e.g., EU AI Act risk levels for known models).
Use the extensibility category for framework-specific metadata that doesn't fit the core 10 categories.
Validate generated metadata against the AgentFacts JSON schema. Include comprehensive test coverage.
All framework integrations should implement these core methods for consistency across the ecosystem.
class AgentFactsGenerator:
"""Base class for framework integrations"""
@staticmethod
def from_agent(agent, agent_name: str, **kwargs) -> AgentFacts:
"""
Generate AgentFacts from framework agent object
Args:
agent: Framework-specific agent instance
agent_name: Human-readable agent identifier
**kwargs: Additional metadata (compliance, performance, etc.)
Returns:
AgentFacts instance with complete metadata
"""
pass
def export(self, filepath: str, format: str = "json") -> None:
"""Export AgentFacts to file"""
pass
def register_blockchain(self, chain: str = "hedera") -> str:
"""Register metadata hash on blockchain"""
pass
def validate(self) -> bool:
"""Validate against AgentFacts JSON schema"""
pass
Complete API reference with examples for all methods and configuration options.
View API Docs →Jared James Grogan, creator of AgentFacts, provides consulting for custom framework integrations, enterprise deployments, and standards adoption.
• Custom integration development
• Framework-specific optimization
• Enterprise deployment support
• Team training and workshops
Contact: jared.grogan@post.harvard.edu